Salta la navigazione

Sezione Aurea

La sezione aurea o rapporto aureo o numero aureo o costante di Fidia o proporzione divina, nell'ambito delle arti e della matematica, indica il rapporto fra due lunghezze, delle quali la maggiore è medio proporzionale tra somma delle due e la minore, Tale rapporto vale approssimativamente 1,618, è un numero irrazionale (cioè non rappresentabile come frazione di numeri interi) ma algebrico (ovvero soluzione di un’equazione). Esso può essere approssimato, con crescente precisione, dai rapporti fra due termini successivi della successione di Fibonacci, a cui è strettamente collegato.

Sia le sue proprietà geometriche e matematiche, che la frequente riproposizione in svariati contesti naturali e culturali, apparentemente non collegati tra loro, hanno impressionato nei secoli la mente dell'uomo, che è arrivato a cogliervi col tempo un ideale di bellezza e armonia, spingendosi a ricercarlo quale "canone di bellezza".

Keplero sostenne che «...la geometria ha due grandi tesori: uno è il teorema di Pitagora; l'altro è la divisione di un segmento secondo il rapporto medio ed estremo. Possiamo paragonare il primo a una certa quantità d'oro, e definire il secondo una pietra preziosa. »

La definizione del rapporto aureo viene fissata attorno al VI secolo a.C., ad opera della scuola pitagorica (i discepoli e seguaci di Pitagora), nell'Italia meridionale. La definizione di rapporto aureo viene ricondotta allo studio del pentagono regolare; il pentagono è un poligono a 5 lati nel cui numero i pitagorici scorsero l'unione del principio maschile e femminile (rispettivamente nella somma del 2 col 3), tanto da considerarlo il numero dell'amore e del matrimonio.

L'aura magica che i pitagorici associavano al numero 5, e a tutto ciò che vi fosse legato, può spiegare come il rapporto aureo potesse apparire ai loro occhi tanto affascinante, pur ignorandone ancora gran parte delle proprietà matematiche, e giustificare in parte l'alone di mistero che lo ha avvolto sin dalla sua scoperta fino ai nostri giorni.

La sezione aurea risulta connessa con la geometria del pentagono: in particolare il rapporto aureo è pari al rapporto fra la diagonale ed il lato, ma anche fra varie parti delle diagonali e in un'infinità di relazioni simili, se immaginiamo che nel pentagono centrale possiamo iscrivere una nuova stella a cinque punte (o pentagramma), la quale produrrà a sua volta un nuovo pentagono centrale, in cui ripetere l'iscrizione del pentagramma e così via.

Euclide, intorno al 300 a.C., lasciò la più antica testimonianza scritta sull'argomento. Nel XIII libro dei suoi Elementi, a proposito della costruzione del pentagono, egli fornisce la definizione di divisione di un segmento in "media e ultima ragione"

Dal declino del periodo ellenistico passarono circa mille anni prima che la sezione aurea tornasse nuovamente a stuzzicare le menti dei matematici, che ne rilevarono proprietà di natura algebrica, prima inconoscibili per via meramente geometrica.

Nel 1202 Leonardo Pisano, detto Fibonacci pubblica il suo Liber Abaci, il libro col quale si diffonderanno in Europa le cifre indo-arabe, semplificando le modalità di calcolo nelle operazioni quotidiane.

Nel medesimo libro, Fibonacci introdusse pure per la prima volta, involontariamente, il concetto di successione ricorsiva,in cui ogni termine è la somma dei due precedenti. Probabilmente ad insaputa dello scopritore, anche la successione che porta il suo nome è indissolubilmente legata alla sezione aurea; il rapporto tra i due argomenti fu tuttavia scoperto solo qualche secolo più tardi da un altro matematico durante il periodo Rinascimentale..

Il rinnovato interesse per il numero aureo in epoca rinascimentale può essere ascritto ad un altro libro, il De divina proportione di Luca Pacioli (pubblicato a Venezia nel 1509 e corredato di disegni di solidi di Leonardo da Vinci), nel quale si divulgava a una vasta platea di intellettuali l'esistenza del numero e di alcune delle sue numerose proprietà, fino ad allora appannaggio soltanto di una più ristretta cerchia di specialisti. Il medesimo libro scalzava inoltre la definizione euclidea, unica dicitura col quale il numero veniva chiamato, reinventandone una completamente nuova di proporzione divina, dove l'aggettivo "divina" è dovuto ad un accostamento tra la proprietà di irrazionalità del numero (che lo rende compiutamente inesprimibile per mezzo di una ratio o frazione) e l'inconoscibilità del divino per mezzo della ragione umana:

La relazione tra il numero aureo e la serie di Fibonacci, rimasta ignota anche a Luca Pacioli, fu scoperta nel 1611 da Keplero, come rilevano i seguenti passi di una sua lettera:

"... questa proporzione [...] che gli odierni [...] chiamano divina [...] è congegnata in modo tale che i due termini minori di una serie nascente presi insieme formino il terzo, e gli ultimi due addizionati, il termine [a loro] successivo, e così via indefinitamente, dato che la stessa proporzione si conserva inalterata [...] più si va avanti a partire dal numero 1, più l'esempio diventa perfetto. Siano 1 e 1 i termini più piccoli [...] sommandoli, il risultato è 2; aggiungiamo a questo il precedente 1, e otteniamo 3; aggiungiamogli 2, e otteniamo 5; aggiungiamogli 3, e abbiamo 8; 5 e 8 danno 13; 8 e 13 danno 21. Come 5 sta a 8, così, approssimativamente, 8 sta a 13, e come 8 sta a 13 così, approssimativamente, 13 sta a 21."

Keplero aveva praticamente scoperto che il rapporto fra due numeri consecutivi della successione di Fibonacci approssimava via via, sempre più precisamente, il numero aureoma Keplero, quale astronomo, non era forse tanto interessato a dimostrare la fondatezza della sua scoperta,anzi piuttosto a ricercarla nell'architettura dell'universo, che lui invece osserva, nelle sue proprietà "divine"; non a caso concettualizzò un modello eliocentrico in cui le orbite dei pianeti erano inscritte e circoscritte in solidi platonici e di conseguenza legate alla divina proporzione.

Se per molto tempo la sezione aurea venne conosciuta con la definizione euclidea di proporzione media ed estrema, per poi assumere l'aggettivo divina dopo l'uscita dell'opera di Pacioli, non è altrettanto certa l'origine della sua definizione come "aurea".

Nonostante la diffusa ed errata opinione che tale denominazione fosse in auge fin dall'antica Grecia, studiosi di storia della matematica la collocano più verosimilmente attorno al XV –XVI secolo.. La prima testimonianza scritta rintracciabile sembra risalire al matematico tedesco Martin Ohm il quale scrive «è chiamata "sezione aurea"», specificando così di non esserne l'ideatore ma di usare un'espressione già discretamente diffusa. La nuova denominazione si diffuse largamente nei primi anni dell'Ottocento, trovando sempre maggiori riferimenti nelle opere scritte, prima in tedesco e poi in lingua inglese, facilitando così l'internazionalizzazione della formula ed entrando a pieno titolo nell'ambito culturale accademico, anche inizialmente solo come termine legato ancora alla sfera estetica, prima di essere acquisito a pieno titolo nell'ambito matematico ufficiale.

La sezione aurea si diffonde nell'Ottocento anche nel campo dell'arte, comparendo nelle opere di molti artisti in cui contrariamente al passato, se ne può affermare la presenza per ammissione dello stesso artista; particolare contributo alla sua diffusione fu dato dalla convinzione che la proporzione aurea, in particolare il rettangolo aureo, costituisse un canone estetico "naturale", per la sua ricorrenza in naturae che quindi le sue proporzioni conferissero uno straordinario senso di armonia in tutto ciò che la possedeva.